HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦
Catalog
Problem:Portal传送门
原题目描述在最下面。
Solution:
一看矩阵快速幂,再一看怎么多一个变项?\(⌊ \frac{p}{n}⌋\)?
我去,\(⌊ \frac{p}{n}⌋\)这不是前几天写过的一道除法分块经典题吗?
关于除法分块,请看这里:GYM101652
然后,就没有然后了~
AC_Code:
#include<bits/stdc++.h>
#define mme(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int MXN = 5e5+7;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
int n;
LL A,B,C,D,P;
struct lp{
LL ar[3][3];
}aa, bb, cc;
lp exe(lp a,lp b,int n,int m,int h){
lp c; memset(c.ar,0,sizeof(c.ar));
for(int k = 0; k < m; ++k){
for(int i = 0; i < n; ++i){
if(a.ar[i][k] == 0) continue;
for(int j = 0; j < h; ++j){
if(b.ar[k][j] == 0) continue;
c.ar[i][j] += a.ar[i][k] * b.ar[k][j];
c.ar[i][j] %= MOD;
}}}
return c;
}
lp ksm(lp a, LL b, int n){
lp ret;
for(int i=0;i<n;++i) for(int j=0;j<n;++j) ret.ar[i][j]=(i==j);
while(b>0){
if(b&1) ret=exe(ret, a, n, n, n);
a = exe(a, a, n, n, n); b >>= 1;
}
return ret;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("E://ADpan//in.in", "r", stdin);
//freopen("E://ADpan//out.out", "w", stdout);
#endif
int tc = 0;
int tim;
scanf("%d", &tim);
while(tim--){
scanf("%lld%lld%lld%lld%lld%d", &A,&B,&C,&D,&P,&n);
if(n == 1){
printf("%lld\n", A);
continue;
}else if(n == 2){
printf("%lld\n", B);
continue;
}else if(n == 3){
printf("%lld\n", (B*D%MOD+A*C%MOD+P/3)%MOD);
continue;
}
/*aa.ar[3][3] = {
{D,1LL,0LL},
{C,0LL,0LL},
{xLL,0LL,1LL},
};*/
memset(aa.ar,0,sizeof(aa.ar));
memset(bb.ar,0,sizeof(bb.ar));
aa.ar[0][0]=D;
aa.ar[1][0]=C;
aa.ar[0][1]=1;
aa.ar[2][2]=1;
bb.ar[0][0]=B;
bb.ar[0][1]=A;
bb.ar[0][2]=1;
/*bb.ar[3][3] = {
{B,A,1},
};*/
//这是参考大佬的写法一
for(LL l = 3, r; l <= n; l = r + 1){
if(P/l) r = min(P/(P/l),n*1LL);
else r = n;
aa.ar[2][0] = P/l;
cc = ksm(aa, r-l+1, 3);
bb = exe(bb, cc, 3, 3, 3);
}
/*这是我本来繁琐的写法
for(LL l = 3, r; l <= P; l = r + 1){
r = min(P/(P/l),n*1LL);
aa.ar[2][0] = P/l;
cc = ksm(aa, r-l+1, 3);
bb = exe(bb, cc, 3, 3, 3);
if(r == n * 1LL)break;
}
if(P <= n - 1){
LL m = n - (P+1)+1;
aa.ar[2][0] = 0;
if(P<3)m = n-2;
cc = ksm(aa, m, 3);
bb = exe(bb, cc, 3, 3, 3);
}*/
printf("%lld\n", bb.ar[0][0]);
}
return 0;
}
Problem Description:
模板:
typedef vector<long long> vec;
typedef vector<vec > mat;
mat Mul(mat a, mat b) {
mat c(a.size(), vec(b[0].size()));
for(int k = 0; k < b.size(); ++k) {
for(int i = 0; i < a.size(); ++i) {
if(a[i][k] == 0) continue;
for(int j = 0; j < b[0].size(); ++j) {
c[i][j] = (c[i][j] + a[i][k] * b[k][j])%mod;
}
}
}
return c;
}
mat mat_ksm(mat a, LL b) {
mat res(a.size(), vec(a.size()));
for(int i = 0; i < a.size(); ++i) res[i][i] = 1;
while(b) {
if(b&1) res = Mul(res, a);
a = Mul(a, a);
b >>= 1;
}
return res;
}
LL fib_n(LL n) {
mat a(2, vec(2));
a[0][0] = 1; a[0][1] = 1;
a[1][0] = 1; a[1][1] = 0;
a = mat_ksm(a, n);
return a[1][0];
}
ACMer,无怨无悔