CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression

1. Sigmoid Function

In Logisttic Regression, the hypothesis is defined as:

where function g is the sigmoid function. The sigmoid function is defined as:


2.Cost function and gradient

The cost function in logistic regression is:


the gradient of the cost is a vector of the same length as θ  where jth element(for j=0,1,...,n) is defined as follows:


3. Regularized Cost function and gradient

Recall that the regularized cost function in logistic regression is:


The gradient of the cost function is a vector where the jth element is defined as follows:

for j=0:


for j>=1:


 

Here are the code files:

ex2_data1.txt

 

34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1
View Code

 

ex2.m

  1 %% Machine Learning Online Class - Exercise 2: Logistic Regression
  2 %
  3 %  Instructions
  4 %  ------------
  5 % 
  6 %  This file contains code that helps you get started on the logistic
  7 %  regression exercise. You will need to complete the following functions 
  8 %  in this exericse:
  9 %
 10 %     sigmoid.m
 11 %     costFunction.m
 12 %     predict.m
 13 %     costFunctionReg.m
 14 %
 15 %  For this exercise, you will not need to change any code in this file,
 16 %  or any other files other than those mentioned above.
 17 %
 18 
 19 %% Initialization
 20 clear ; close all; clc
 21 
 22 %% Load Data
 23 %  The first two columns contains the exam scores and the third column
 24 %  contains the label.
 25 
 26 data = load('ex2data1.txt');
 27 X = data(:, [1, 2]); y = data(:, 3);
 28 
 29 %% ==================== Part 1: Plotting ====================
 30 %  We start the exercise by first plotting the data to understand the 
 31 %  the problem we are working with.
 32 
 33 fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
 34          'indicating (y = 0) examples.\n']);
 35 
 36 plotData(X, y);
 37 
 38 % Put some labels 
 39 hold on;
 40 % Labels and Legend
 41 xlabel('Exam 1 score')
 42 ylabel('Exam 2 score')
 43 
 44 % Specified in plot order
 45 legend('Admitted', 'Not admitted')
 46 hold off;
 47 
 48 fprintf('\nProgram paused. Press enter to continue.\n');
 49 pause;
 50 
 51 
 52 %% ============ Part 2: Compute Cost and Gradient ============
 53 %  In this part of the exercise, you will implement the cost and gradient
 54 %  for logistic regression. You neeed to complete the code in 
 55 %  costFunction.m
 56 
 57 %  Setup the data matrix appropriately, and add ones for the intercept term
 58 [m, n] = size(X);
 59 
 60 % Add intercept term to x and X_test
 61 X = [ones(m, 1) X];
 62 
 63 % Initialize fitting parameters
 64 initial_theta = zeros(n + 1, 1);
 65 
 66 % Compute and display initial cost and gradient
 67 [cost, grad] = costFunction(initial_theta, X, y);
 68 
 69 fprintf('Cost at initial theta (zeros): %f\n', cost);
 70 fprintf('Gradient at initial theta (zeros): \n');
 71 fprintf(' %f \n', grad);
 72 
 73 fprintf('\nProgram paused. Press enter to continue.\n');
 74 pause;
 75 
 76 
 77 %% ============= Part 3: Optimizing using fminunc  =============
 78 %  In this exercise, you will use a built-in function (fminunc) to find the
 79 %  optimal parameters theta.
 80 
 81 %  Set options for fminunc
 82 options = optimset('GradObj', 'on', 'MaxIter', 400);
 83 
 84 %  Run fminunc to obtain the optimal theta
 85 %  This function will return theta and the cost 
 86 [theta, cost] = ...
 87     fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
 88 
 89 % Print theta to screen
 90 fprintf('Cost at theta found by fminunc: %f\n', cost);
 91 fprintf('theta: \n');
 92 fprintf(' %f \n', theta);
 93 
 94 % Plot Boundary
 95 plotDecisionBoundary(theta, X, y);
 96 
 97 % Put some labels 
 98 hold on;
 99 % Labels and Legend
100 xlabel('Exam 1 score')
101 ylabel('Exam 2 score')
102 
103 % Specified in plot order
104 legend('Admitted', 'Not admitted')
105 hold off;
106 
107 fprintf('\nProgram paused. Press enter to continue.\n');
108 pause;
109 
110 %% ============== Part 4: Predict and Accuracies ==============
111 %  After learning the parameters, you'll like to use it to predict the outcomes
112 %  on unseen data. In this part, you will use the logistic regression model
113 %  to predict the probability that a student with score 45 on exam 1 and 
114 %  score 85 on exam 2 will be admitted.
115 %
116 %  Furthermore, you will compute the training and test set accuracies of 
117 %  our model.
118 %
119 %  Your task is to complete the code in predict.m
120 
121 %  Predict probability for a student with score 45 on exam 1 
122 %  and score 85 on exam 2 
123 
124 prob = sigmoid([1 45 85] * theta);
125 fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
126          'probability of %f\n\n'], prob);
127 
128 % Compute accuracy on our training set
129 p = predict(theta, X);
130 
131 fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
132 
133 fprintf('\nProgram paused. Press enter to continue.\n');
134 pause;
View Code

sigmoid.m

 1 function g = sigmoid(z)
 2 %SIGMOID Compute sigmoid functoon
 3 %   J = SIGMOID(z) computes the sigmoid of z.
 4 
 5 % You need to return the following variables correctly 
 6 g = zeros(size(z));
 7 
 8 % ====================== YOUR CODE HERE ======================
 9 % Instructions: Compute the sigmoid of each value of z (z can be a matrix,
10 %               vector or scalar).
11 
12 
13 g = 1./(1+exp(-z));
14 
15 
16 % =============================================================
17 
18 end
View Code

costFunction.m

 1 function [J, grad] = costFunction(theta, X, y)
 2 %COSTFUNCTION Compute cost and gradient for logistic regression
 3 %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
 4 %   parameter for logistic regression and the gradient of the cost
 5 %   w.r.t. to the parameters.
 6 
 7 % Initialize some useful values
 8 m = length(y); % number of training examples
 9 
10 % You need to return the following variables correctly 
11 J = 0;
12 grad = zeros(size(theta));
13 
14 % ====================== YOUR CODE HERE ======================
15 % Instructions: Compute the cost of a particular choice of theta.
16 %               You should set J to the cost.
17 %               Compute the partial derivatives and set grad to the partial
18 %               derivatives of the cost w.r.t. each parameter in theta
19 %
20 % Note: grad should have the same dimensions as theta
21 %
22 hx = sigmoid(X*theta);  % m x 1
23 J = -1/m*(y'*log(hx)+((1-y)'*log(1-hx)));
24 grad = 1/m*X'*(hx-y);
25 
26 
27 
28 
29 
30 
31 % =============================================================
32 
33 end
View Code

predict.m

 1 function p = predict(theta, X)
 2 %PREDICT Predict whether the label is 0 or 1 using learned logistic 
 3 %regression parameters theta
 4 %   p = PREDICT(theta, X) computes the predictions for X using a 
 5 %   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
 6 
 7 m = size(X, 1); % Number of training examples
 8 
 9 % You need to return the following variables correctly
10 p = zeros(m, 1);
11 
12 % ====================== YOUR CODE HERE ======================
13 % Instructions: Complete the following code to make predictions using
14 %               your learned logistic regression parameters. 
15 %               You should set p to a vector of 0's and 1's
16 %
17 
18 p = sigmoid(X*theta)>=0.5;
19 
20 
21 
22 
23 % =========================================================================
24 
25 
26 end
View Code

costFunctionReg.m

 1 function [J, grad] = costFunctionReg(theta, X, y, lambda)
 2 %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
 3 %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
 4 %   theta as the parameter for regularized logistic regression and the
 5 %   gradient of the cost w.r.t. to the parameters. 
 6 
 7 % Initialize some useful values
 8 m = length(y); % number of training examples
 9 
10 % You need to return the following variables correctly 
11 J = 0;
12 grad = zeros(size(theta));
13 
14 % ====================== YOUR CODE HERE ======================
15 % Instructions: Compute the cost of a particular choice of theta.
16 %               You should set J to the cost.
17 %               Compute the partial derivatives and set grad to the partial
18 %               derivatives of the cost w.r.t. each parameter in theta
19 hx = sigmoid(X*theta);
20 reg = lambda/(2*m)*sum(theta(2:size(theta),:).^2);
21 J = -1/m*(y'*log(hx)+(1-y)'*log(1-hx)) + reg;
22 theta(1) = 0;
23 grad = 1/m*X'*(hx-y)+lambda/m*theta;
24 
25 
26 % =============================================================
27 
28 end
View Code

 

 

 

 

 

 

posted @ 2015-06-25 20:06  ZH奶酪  阅读(2058)  评论(0编辑  收藏  举报