【BZOJ3438】小M的作物 最小割
【BZOJ3438】小M的作物
Description
小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子
有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植
可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益
,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以
获得c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?
Input
第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式
Output
只有一行,包括一个整数,表示最大收益
Sample Input
3
4 2 1
2 3 2
1
2 3 2 1 2
4 2 1
2 3 2
1
2 3 2 1 2
Sample Output
11
样例解释A耕地种1,2,B耕地种3,收益4+2+3+2=11。
1<=k< n<= 1000,0 < m < = 1000 保证所有数据及结果不超过2*10^9。
样例解释A耕地种1,2,B耕地种3,收益4+2+3+2=11。
1<=k< n<= 1000,0 < m < = 1000 保证所有数据及结果不超过2*10^9。
题解:最小割,建边方法如下:
S->作物i,容量k1i
作物i->T,容量k2i
S->组合j1,容量c1j
组合j1->组合j中的作物,容量∞
组合j2->T,容量c2j
组合j中的作物->j2,容量∞
答案为总收益-最小割
#include <cstdio> #include <cstring> #include <iostream> #include <queue> using namespace std; const int maxn=4010; const int maxm=4100000; int n,m,cnt,S,T,ans,sum,tot; int to[maxm],next[maxm],val[maxm],d[maxn],head[maxn]; queue<int> q; int rd() { int ret=0; char gc=getchar(); while(gc<'0'||gc>'9') gc=getchar(); while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret; } void add(int a,int b,int c) { to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++; to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++; } int bfs() { memset(d,0,sizeof(d)); while(!q.empty()) q.pop(); d[S]=1,q.push(S); int i,u; while(!q.empty()) { u=q.front(),q.pop(); for(i=head[u];i!=-1;i=next[i]) { if(!d[to[i]]&&val[i]) { d[to[i]]=d[u]+1; if(to[i]==T) return 1; q.push(to[i]); } } } return 0; } int dfs(int x,int mf) { if(x==T) return mf; int i,k,temp=mf; for(i=head[x];i!=-1;i=next[i]) { if(d[to[i]]==d[x]+1&&val[i]) { k=dfs(to[i],min(temp,val[i])); if(!k) d[to[i]]=0; val[i]-=k,val[i^1]+=k,temp-=k; if(!temp) break; } } return mf-temp; } int main() { n=rd(); int i,j,k,a,b,c,d; memset(head,-1,sizeof(head)); S=0,T=tot=n+1; for(i=1;i<=n;i++) a=rd(),add(S,i,a),sum+=a; for(i=1;i<=n;i++) a=rd(),add(i,T,a),sum+=a; m=rd(); for(i=1;i<=m;i++) { a=rd(); b=rd(),add(S,++tot,b),sum+=b,b=rd(),add(++tot,T,b),sum+=b; for(j=1;j<=a;j++) c=rd(),add(tot-1,c,1<<30),add(c,tot,1<<30); } while(bfs()) ans+=dfs(S,1<<30); printf("%d",sum-ans); return 0; }
| 欢迎来原网站坐坐! >原文链接<