【BZOJ3438】小M的作物 最小割

【BZOJ3438】小M的作物

Description

小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子
有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植
可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益
,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以
获得c2i的额外收益,所以,小M很快的算出了种植的最大收益,但是他想要考考你,你能回答他这个问题么?

Input

第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式

Output

只有一行,包括一个整数,表示最大收益

Sample Input

3
4 2 1
2 3 2
1
2 3 2 1 2

Sample Output

11
样例解释A耕地种1,2,B耕地种3,收益4+2+3+2=11。
1<=k< n<= 1000,0 < m < = 1000 保证所有数据及结果不超过2*10^9。

题解:最小割,建边方法如下:

S->作物i,容量k1i
作物i->T,容量k2i
S->组合j1,容量c1j
组合j1->组合j中的作物,容量∞
组合j2->T,容量c2j
组合j中的作物->j2,容量∞

答案为总收益-最小割

 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
const int maxn=4010;
const int maxm=4100000;
int n,m,cnt,S,T,ans,sum,tot;
int to[maxm],next[maxm],val[maxm],d[maxn],head[maxn];
queue<int> q;
int rd()
{
	int ret=0;	char gc=getchar();
	while(gc<'0'||gc>'9')	gc=getchar();
	while(gc>='0'&&gc<='9')	ret=ret*10+gc-'0',gc=getchar();
	return ret;
}
void add(int a,int b,int c)
{
	to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
	to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int bfs()
{
	memset(d,0,sizeof(d));
	while(!q.empty())	q.pop();
	d[S]=1,q.push(S);
	int i,u;
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=next[i])
		{
			if(!d[to[i]]&&val[i])
			{
				d[to[i]]=d[u]+1;
				if(to[i]==T)	return 1;
				q.push(to[i]);
			}
		}
	}
	return 0;
}
int dfs(int x,int mf)
{
	if(x==T)	return mf;
	int i,k,temp=mf;
	for(i=head[x];i!=-1;i=next[i])
	{
		if(d[to[i]]==d[x]+1&&val[i])
		{
			k=dfs(to[i],min(temp,val[i]));
			if(!k)	d[to[i]]=0;
			val[i]-=k,val[i^1]+=k,temp-=k;
			if(!temp)	break;
		}
	}
	return mf-temp;
}
int main()
{
	n=rd();
	int i,j,k,a,b,c,d;
	memset(head,-1,sizeof(head));
	S=0,T=tot=n+1;
	for(i=1;i<=n;i++)	a=rd(),add(S,i,a),sum+=a;
	for(i=1;i<=n;i++)	a=rd(),add(i,T,a),sum+=a;
	m=rd();
	for(i=1;i<=m;i++)
	{
		a=rd();
		b=rd(),add(S,++tot,b),sum+=b,b=rd(),add(++tot,T,b),sum+=b;
		for(j=1;j<=a;j++)	c=rd(),add(tot-1,c,1<<30),add(c,tot,1<<30);
	}
	while(bfs())	ans+=dfs(S,1<<30);
	printf("%d",sum-ans);
	return 0;
}

 

posted @ 2017-05-03 13:30  CQzhangyu  阅读(289)  评论(0编辑  收藏  举报