【ARC075F】Mirrored 搜索/数位dp
Description
给定正整数DD,求有多少个正整数NN,满足rev(N)=N+Drev(N)=N+D,其中rev(N)rev(N)表示将NN的十进制表示翻转来读得到的数
Input
一个正整数DD
Output
满足上述条件的正整数的个数
Sample Input
Case 1:
63
Case 2:
75
Case 3:
864197532
Sample Output
Case 1:
2
Case 2:
0
Case 3:
1920
HINT
1≤D≤1091≤D≤109
样例1解释:81=18+63,92=29+63
Sol
我们把题目转化成rev(n)-n=d,然后折半搜索,只搜一半,另一半可以直接计算,这样的复杂度为\(O(2^{18})\)左右。
然而还是有更强的做法的,这个不用搜。。可以dp。。而且复杂度只有\(O(d^2*10)\),具体地,在这里:orzDTZ,写得非常详细。
Code
搜索:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int D,cnt[19],ans;ll b[20];
void dfs(int x,ll res,int L,int now)
{
if(x>(L>>1)-1){if(res==D) ans+=now*(L&1?10:1);return;}
ll i=-9ll;while(i<9ll&&res+(i+1ll)*(b[L-x-1]-b[x])<=D) ++i;
dfs(x+1,res+i*(b[L-x-1]-b[x]),L,now*(x==0&&i>=0?cnt[i+9]-1:cnt[i+9]));
if(++i<=9) dfs(x+1,res+i*(b[L-x-1]-b[x]),L,now*(x==0&&i>=0?cnt[i+9]-1:cnt[i+9]));
}
int main()
{
scanf("%d",&D);
b[0]=1ll;for(int i=1;i<19;++i) b[i]=b[i-1]*10ll;
for(int i=0;i<=9;++i) for(int j=0;j<=9;++j) ++cnt[i-j+9];
for(int i=1;i<=18;++i) dfs(0,0,i,1);
printf("%d",ans);
}
dp:
#include <bits/stdc++.h>
using namespace std;
int d[10005],f[10005][2][2],L,ans,lim,P=1e9+7;char D[10005];
int dp(int n)
{
int m=n>>1,res=0;
for(int i=0;i<=m;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) f[i][j][k]=0;
f[0][0][0]=1;
for(int i=0;i<m;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) if(f[i][j][k]) for(int x=0,y,j1,k1;x<10;x++)
{
k1=x+d[i+1]+k,y=k1%10,k1/=10,j1=10*j+x-y-d[n-i];
if(j1<0||j1>1||(!i&&(!x||!y))) continue;
(f[i+1][j1][k1]+=f[i][j][k])%=P;
}
if(n&1) for(int j=0,mid=(n+1)>>1;j<2;j++) for(int k=0;k<2;k++) if(f[m][j][k]) for(int x=0,y;x<10;x++)
{
y=x+d[mid]+k;
if((x==y%10)&&(y/10==j)) (res+=f[m][j][k])%=P;
}
if(!(n&1)) for(int j=0;j<2;j++) (res+=f[m][j][j])%=P;
return res;
}
int main()
{
scanf("%s",D+1);L=strlen(D+1);lim=L<<1;
for(int i=1;i<=L;i++) d[L-i+1]=D[i]-'0';
for(int i=max(2,L);i<=lim;i++) (ans+=dp(i))%=P;
printf("%d\n",(ans+P)%P);
}