Codeforces 830C Bamboo Partition (看题解)

Bamboo Partition

列公式, 整除分块, 想不到, 好菜啊。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long

using namespace std;

const int N = 100 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double PI = acos(-1);

LL n, k, a[N], b[10000007], tar, tot;

int main() {
    scanf("%lld%lld", &n, &k);
    for(int i = 1; i <= n; i++) {
        scanf("%lld", &a[i]);
        tar += a[i];
        a[i]--;
    }
    tar += k;
    for(int i = 1; i <= n; i++) {
        for(int j = 1, k; j < a[i]; j = k + 1) {
            k = a[i] / (a[i] / j);
            b[tot++] = j;
        }
        b[tot++] = a[i] + 1;
    }
    sort(b, b + tot);
    tot = unique(b, b + tot) - b;
    for(int i = tot - 1; i >= 0; i--) {
        LL d = b[i], val = 0;
        for(int i = 1; i <= n; i++)
            val += d * (a[i] / d);
        if(n * d + val <= tar) {
            val = 0;
            for(int i = 1; i <= n; i++) val += a[i] / d;
            printf("%lld\n", tar / (val + n));
            return 0;
        }
    }
    return 0;
}

/*
*/

 

posted @ 2019-03-04 23:34  NotNight  阅读(128)  评论(0编辑  收藏  举报