Tree 点分治
题目描述
给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K
输入输出格式
输入格式:N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k
输出格式:一行,有多少对点之间的距离小于等于k
输入输出样例
输入样例#1:
7 1 6 13 6 3 9 3 5 7 4 1 3 2 4 20 4 7 2 10
输出样例#1:
5
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; inline int read() { int res=0;char ch=getchar(); while(!isdigit(ch)) ch=getchar(); while(isdigit(ch)) res=(res<<3)+(res<<1)+(ch^48),ch=getchar(); return res; } #define reg register #define N 200005 int n, tot, k; long long ans; int head[N], cnt = 1; struct edge { int nxt, to, val; }ed[N*2]; inline void add(int x, int y, int z) { ed[++cnt] = (edge){head[x], y, z}; head[x] = cnt; } bool cut[N*2]; int siz[N], root, mrt = 1e9; void dfs(int x, int fa) { siz[x] = 1; for (reg int i = head[x] ; i ; i = ed[i].nxt) { int to = ed[i].to; if (to == fa or cut[i]) continue; dfs(to, x); siz[x] += siz[to]; } } void efs(int x, int fa) { int tmp = tot - siz[x]; for (reg int i = head[x] ; i ; i = ed[i].nxt) { int to = ed[i].to; if (to == fa or cut[i]) continue; efs(to, x); tmp = max(tmp, siz[to]); } if (tmp < mrt) mrt = tmp, root = x; } inline int FindRoot(int x) { return x; dfs(x, 0); mrt = 1e9; tot = siz[x]; root = n; efs(x, 0); return root; } int a[N]; int top; void Work(int x, int fa, int d) { a[++top] = d; for (reg int i = head[x] ; i ; i = ed[i].nxt) { int to = ed[i].to; if (to == fa or cut[i]) continue; Work(to, x, d + ed[i].val); } } inline int Calc(int x, int d) { int res = 0; top = 0; Work(x, 0, d); sort (a + 1, a + 1 + top); int l = 1, r = top; while (l < r) { while(a[l] + a[r] > k and l < r) r--; res += r - l, l ++; } return res; } void solve(int rt) { root = FindRoot(rt); ans += Calc(root, 0); for (reg int i = head[root] ; i ; i = ed[i].nxt) { int to = ed[i].to; if (cut[i]) continue; cut[i] = cut[i ^ 1] = 1; ans -= Calc(to, ed[i].val); solve(to); } } int main() { n = read(); for (reg int i = 1 ; i < n ; i ++) { int x = read(), y = read(), z = read(); add(x, y, z), add(y, x, z); } k = read(); solve(1); printf("%d\n", ans); return 0; }