随笔分类 - 机器学习 && 数据挖掘
摘要:分词技术就是搜索引擎针对用户提交查询的关键词串进行的查询处理后根据用户的关键词串用各种匹配方法进行的一种技术。当然,我们在进行数据挖掘、精准推荐和自然语言处理工作中也会经常用到中文分词技术。一、为什么要进行中文分词?词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉...
阅读全文
摘要:机器学习六--K-means聚类算法想想常见的分类算法有决策树、Logistic回归、SVM、贝叶斯等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算...
阅读全文
摘要:我也想了解数据挖掘机器学习和数据挖掘这一行业确实很吸引人,我也正在努力学习这一方面的知识,希望可以作为我今后的工作方向。本人就读于一所普通211大学,老实讲,这一方面的知识就别指望学校里的老师给我们讲了,想想有点挂钩的就属大一的概率论了吧。数据挖掘是一行业,机器学习是一方法,我们用机器的学习算法来处...
阅读全文
摘要:机器学习和数据挖掘推荐书单有了这些书,再也不愁下了班没妹纸该咋办了。慢慢来,认真学,揭开机器学习和数据挖掘这一神秘的面纱吧!《机器学习实战》:本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向...
阅读全文
摘要:机器学习五--机器学习的“HelloWorld”,感知机感知机是二类分类的线性分类模型,是神经网络和支持向量机的基础。其输入为实例的特征向量,输出为实例的类别,取+1和-1二值之一,即二类分类。感知机对应于输入空间(特征空间)将实例划分为正负两类的分离超平面,属于判别模型。我们对于感知机的学习旨在求...
阅读全文
摘要:基于概率的分类方法:朴素贝叶斯贝叶斯决策理论朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲解朴素贝叶斯之前我们先快速简单了解一下贝叶斯决策理论知识。贝叶斯决策理论的核心思想:选择具有最高概率的决策。比如我们毕业选择就业方向,选择C++方向的概率为0.3,选择Java的概率为0.2,选择机器学习的概率为...
阅读全文
摘要:Python语言实现机器学习的K-近邻算法写在前面额、、、最近开始学习机器学习嘛,网上找到一本关于机器学习的书籍,名字叫做《机器学习实战》。很巧的是,这本书里的算法是用Python语言实现的,刚好之前我学过一些Python基础知识,所以这本书对于我来说,无疑是雪中送炭啊。接下来,我还是给大家讲讲实际...
阅读全文
摘要:决策树学习从今天开始,坚持每天学习一个机器学习的新知识,加油!决策树学习是应用最广的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一颗决策树。决策树表示法决策树通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例...
阅读全文
摘要:机器学习中的监督学习和无监督学习说在前面最近的我一直在寻找实习机会,很多公司给了我第一次电话面试的机会,就没有下文了。不管是HR姐姐还是第一轮的电话面试,公司员工的态度和耐心都很值得点赞,我也非常感激他们。但是我都没有进入下一轮面试的机会,一路想想我的简历和学习经历,确实也挺难有进入第二轮面试的机会...
阅读全文
摘要:转载地址 : 通过身边小事解释机器学习是什么一个给不知道机器学习是什么东西的人讲的一个挺不错的例子,方法。今天从quora上看了一个问题:如何给不是CS的学生,给不知道机器学习和数据挖掘的学生,讲明白什么是机器学习和数据挖掘。其中有个答案很不错,拿买芒果的例子来给大家解释。老师们也应该多用用类似的...
阅读全文