[Project Euler 517]A real recursion 题解
传送门:https://projecteuler.net/problem=517
题意还是很简洁的。
刚开始打了一个表,发现没有什么规律,最后仔细盯了一下式子,发现这是将用1和根号n填,直到大于n-根号n的方案数。
显然这个东西是一个组合数,考虑枚举填了多少个根号,算一下方案即可。单词复杂度是根号的,跑了大概0.4s。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int mod = 1e9 + 7; int inc(int a, int b) { a += b; return a >= mod ? a - mod : a; } int dec(int a, int b) { a -= b; return a < 0 ? a + mod : a; } const int N = 2e7; int fac[N + 10], rfac[N + 10]; int fpow(int a, int x) { int ret = 1; for (; x; x >>= 1) { if (x & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; } return ret; } int C(int n, int m) { if (m < 0 || n < m) return 0; return 1LL * fac[n] * rfac[m] % mod * rfac[n - m] % mod; } int work(int n) { int ans = 0; double t = sqrt(n); for (int i = 0; i * t < n - t; ++i) { int c = ((n - t) - i * t); ans = inc(ans, C(c + i, i)); } for (int i = 0; i < n - t; ++i) { int c = ((n - t) - i) / t; int j = ((n - t) - c * t); //for (int k = i; k <= j; ++k) ans = inc(ans, C(c + k, c)); ans = inc(ans, dec(C(c + j + 1, c + 1), C(c + i, c + 1))); //cerr << i << ", " << c << ", " << j << endl; i = j; } return ans; } unordered_map<double, int> zz; double tt; int work_bf(double n) { if (n < tt) return 1; if (zz[n]) return zz[n]; return zz[n] = inc(work_bf(n - 1), work_bf(n - tt)); } int bf(int n) { tt = sqrt(n); zz.clear(); return work_bf(n); } int main() { for (int i = fac[0] = 1; i <= N; ++i) fac[i] = 1LL * fac[i - 1] * i % mod; rfac[N] = fpow(fac[N], mod - 2); for (int i = N; i; --i) rfac[i - 1] = 1LL * rfac[i] * i % mod; int l, r; //cin >> l >> r; l = 1e7; r = 1e7 + 1e4; int ans = 0, gg = 0; for (int i = l + 1; i < r; ++i) { bool fg = 1; for (int j = 2; j * j <= i; ++j) if (i % j == 0) fg = 0; if (fg) ans = inc(ans, work(i)); } printf("%d\n", ans); return 0; }