《算法导论》读书笔记之第3章 函数的增长
本章介绍了算法分析中的渐进分析符号,几个重要渐进记号的定义如下:
Θ(g(n))={ f(n): 存在正常数c1,c2和n0,使对所有的n>=n0,有0<=c1g(n)<=f(n)<=c2g(n) }
O(g(n))={ f(n): 存在正常数c和n0,使对所有n>=n0,有0<=f(n)<=cg(n) }
Ω(g(n))={ f(n): 存在正常数c和n0,使对所有n>=n0,有0<=cg(n)<=f(n) }
o(g(n))={ f(n): 对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0<=f(n)<=cg(n) }
ω(g(n))={ f(n): 对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0<=cg(n)<f(n) }
f(n)=Ω(g(n)),表示这个算法是有一个渐近下界的,这个渐近下界为g(n),算法的运行时间f(n)趋近并大于等于这个g(n)。
f(n)=Θ(g(n)),表示这个算法是有一个渐近确界的,这个渐近确界为g(n),算法的运行时间f(n)趋近g(n)。
f(n)=O(g(n)),表示这个算法是有一个渐近上界的,这个渐近上界为g(n),算法的运行时间f(n)趋近并小于等于这个g(n)。
冷静思考,勇敢面对,把握未来!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步