BZOJ4154:[IPSC2015]Generating Synergy
浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4154
每个节点看做是点\((dfn_i,dep_i)\),然后对于距离\(a\)的不超过\(l\)的在\(a\)子树中的点就是正方形\([dfn_a,dfn_a+siz_a-1][dep_a,dep_a+l]\),直接范围\(cover\)和单点查询即可。
时间复杂度:\(O(n\sqrt{n})\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e5+5,inf=2e9,mo=1e9+7;
int n,m,c,tot,cnt,pps,ans,Case;
int now[maxn],pre[maxn<<1],son[maxn<<1];
int dfn[maxn],node[maxn],siz[maxn],dep[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
void add(int a,int b) {
pre[++tot]=now[a];
now[a]=tot,son[tot]=b;
}
void dfs(int u,int D) {
dfn[u]=++cnt,dep[u]=D,siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
dfs(v,D+1),siz[u]+=siz[v];
}
struct kd_tree {
int root,top;
int stk[maxn],fa[maxn];
struct point {
int cov,col,ls,rs;
int c[2],mn[2],mx[2];
point() {}
point(int _x,int _y) {
mn[0]=mx[0]=c[0]=_x;
mn[1]=mx[1]=c[1]=_y;
col=1,cov=-1,ls=rs=0;
}
bool operator<(const point &a)const {
return c[pps]<a.c[pps];
}
}p[maxn];
int build(int l,int r,int d) {
int mid=(l+r)>>1,u=mid;pps=d;
nth_element(p+l,p+mid,p+r+1);
node[p[u].c[0]]=u;
if(l<mid)p[u].ls=build(l,mid-1,d^1);
if(r>mid)p[u].rs=build(mid+1,r,d^1);
int ls=p[u].ls,rs=p[u].rs;fa[ls]=fa[rs]=u;
for(int i=0;i<2;i++) {
int mn=min(p[ls].mn[i],p[rs].mn[i]);
p[u].mn[i]=min(p[u].mn[i],mn);
int mx=max(p[ls].mx[i],p[rs].mx[i]);
p[u].mx[i]=max(p[u].mx[i],mx);
}
return u;
}
void prepare() {
p[0].mn[0]=p[0].mn[1]=inf;
p[0].mx[0]=p[0].mx[1]=-inf;
for(int i=1;i<=n;i++)
p[i]=point(dfn[i],dep[i]);
root=build(1,n,0);
}
void make_tag(int u,int c) {
p[u].col=p[u].cov=c;
}
void push_down(int u) {
if(p[u].cov==-1)return;
if(p[u].ls)make_tag(p[u].ls,p[u].cov);
if(p[u].rs)make_tag(p[u].rs,p[u].cov);
p[u].cov=-1;
}
void query(int u,int id) {
int tmp=u;
while(fa[u])stk[++top]=fa[u],u=fa[u];
while(top)push_down(stk[top--]);
ans=(ans+1ll*id*p[tmp].col%mo)%mo;
}
void change(int u,int x1,int x2,int y1,int y2,int color) {
if(x2<p[u].mn[0]||x1>p[u].mx[0])return;
if(y2<p[u].mn[1]||y1>p[u].mx[1])return;
bool bo1=(x1<=p[u].mn[0]&&p[u].mx[0]<=x2);
bool bo2=(y1<=p[u].mn[1]&&p[u].mx[1]<=y2);
if(bo1&&bo2) {make_tag(u,color);return;}
push_down(u);
bo1=(x1<=p[u].c[0]&&p[u].c[0]<=x2);
bo2=(y1<=p[u].c[1]&&p[u].c[1]<=y2);
if(bo1&&bo2)p[u].col=color;
if(p[u].ls)change(p[u].ls,x1,x2,y1,y2,color);
if(p[u].rs)change(p[u].rs,x1,x2,y1,y2,color);
}
}T;
void clear() {
ans=tot=cnt=pps=0;
memset(now,0,sizeof(now));
memset(T.fa,0,sizeof(T.fa));
}
int main() {
Case=read();
while(Case--) {
n=read(),c=read(),m=read(),clear();
for(int i=2,x;i<=n;i++)
x=read(),add(x,i);
dfs(1,1);T.prepare();
for(int i=1;i<=m;i++) {
int a=read(),l=read(),opt=read();
if(!opt)T.query(node[dfn[a]],i);
else T.change(T.root,dfn[a],dfn[a]+siz[a]-1,dep[a],dep[a]+l,opt);
}
printf("%d\n",ans);
}
return 0;
}