永夜初晗凝碧天

本博客现已全部转移到新地址,欲获取更多精彩文章,请访问http://acshiryu.github.io/

导航

POJ2407Relatives --欧拉函数的简单运用

作者:ACShiryu
时间:2011-8-4
Relatives
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7396 Accepted: 3402

Description

Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.

Input

There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.

Output

For each test case there should be single line of output answering the question posed above.

Sample Input

7
12
0

Sample Output

6
4
题目大意就是给一个数n,求出不大于n且与n互素的数的个数,
这就是简单的欧拉函数的运用,关于欧拉函数的求法,网上一搜一大堆,这里省略。
提交一次就A了,不过测试数据不强,我的程序对于1输出的是1,而实际应该是0

参考代码:

 1 #include<iostream>
2 #include<cstdlib>
3 #include<cstdio>
4 #include<cstring>
5 #include<algorithm>
6 #include<cmath>
7 using namespace std;
8 int main()
9 {
10 int n ;
11 while ( scanf ( "%d", & n ) , n )
12 {
13 if ( n == 1 )
14 printf ("0\n") ;
15 else
16 {
17 int i , j , m;
18 m = sqrt ( n + 0.5 ) ;
19 int ans = n ;
20 for ( i = 2; i <= m ; i ++ )
21 if ( n % i == 0)
22 {
23 ans = ans / i * ( i - 1 ) ;
24 while ( n % i == 0 )
25 n /= i ;
26 }
27 if ( n > 1 )
28 ans = ans / n * ( n - 1 ) ;
29
30 printf ("%d\n",ans);
31 }
32 }
33 return 0;
34 }

  

posted on 2011-08-04 22:09  ACShiryu  阅读(1442)  评论(1编辑  收藏  举报