Python 面向对象学习

本节内容

  1. 面向对象介绍

  2. 类和对象

  3. 继承与派生

  4. 多态及多态性

  5. 封装

 

 

 

 

 

 

1.面向对象介绍

想要了解得先知道什么是编程范式。

编程范式:

  编程是 程序 员 用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程 , 一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马,实现一个任务的方式有很多种不同的方式, 对这些不同的编程方式的特点进行归纳总结得出来的编程方式类别,即为编程范式。 不同的编程范式本质上代表对各种类型的任务采取的不同的解决问题的思路, 大多数语言只支持一种编程范式,当然也有些语言可以同时支持多种编程范式。 两种最重要的编程范式分别是面向过程编程和面向对象编程。

面向过程编程(Procedural Programming)

面向过程编程依赖 - 你猜到了- procedures,一个procedure包含一组要被进行计算的步骤, 面向过程又被称为top-down languages, 就是程序从上到下一步步执行,一步步从上到下,从头到尾的解决问题 。基本设计思路就是程序一开始是要着手解决一个大的问题,然后把一个大问题分解成很多个小问题或子过程,这些子过程再执行的过程再继续分解直到小问题足够简单到可以在一个小步骤范围内解决。

# 面向过程实现输出两个数的和
num1 = input('first number:')
num2 = input('second number:')
print(num1+num2)
面向过程实现输出两个数的和

由于面向过程是一步一步执行的,如果有功能的变动,需要修改的值在程序中有多处的依赖关系,那么需要修改所有的值来进行功能的变动。如果程序复杂这就是个不小的工作量。

所以我们一般认为, 如果你只是写一些简单的脚本,去做一些一次性任务,用面向过程的方式是极好的,但如果你要处理的任务是复杂的,且需要不断迭代和维护 的, 那还是用面向对象最方便了。

面向对象编程

OOP编程是利用“类”和“对象”来创建各种模型来实现对真实世界的描述,使用面向对象编程的原因一方面是因为它可以使程序的维护和扩展变得更简单,并且可以大大提高程序开发效率 ,另外,基于面向对象的程序可以使它人更加容易理解你的代码逻辑,从而使团队开发变得更从容。

面向对象的几个核心特性如下

Class 类

一个类即是对一类拥有相同属性的对象的抽象、蓝图、原型。在类中定义了这些对象的都具备的属性(variables(data))、共同的方法

Object 对象 
一个对象即是一个类的实例化后实例,一个类必须经过实例化后方可在程序中调用,一个类可以实例化多个对象,每个对象亦可以有不同的属性,就像人类是指所有人,每个人是指具体的对象,人与人之前有共性,亦有不同

Encapsulation 封装
在类中对数据的赋值、内部调用对外部用户是透明的,这使类变成了一个胶囊或容器,里面包含着类的数据和方法

Inheritance 继承
一个类可以派生出子类,在这个父类里定义的属性、方法自动被子类继承

Polymorphism 多态
多态是面向对象的重要特性,简单点说:“一个接口,多种实现”,指一个基类中派生出了不同的子类,且每个子类在继承了同样的方法名的同时又对父类的方法做了不同的实现,这就是同一种事物表现出的多种形态。
编程其实就是一个将具体世界进行抽象化的过程,多态就是抽象化的一种体现,把一系列具体事物的共同点抽象出来, 再通过这个抽象的事物, 与不同的具体事物进行对话。
对不同类的对象发出相同的消息将会有不同的行为。比如,你的老板让所有员工在九点钟开始工作, 他只要在九点钟的时候说:“开始工作”即可,而不需要对销售人员说:“开始销售工作”,对技术人员说:“开始技术工作”, 因为“员工”是一个抽象的事物, 只要是员工就可以开始工作,他知道这一点就行了。至于每个员工,当然会各司其职,做各自的工作。
多态允许将子类的对象当作父类的对象使用,某父类型的引用指向其子类型的对象,调用的方法是该子类型的方法。这里引用和调用方法的代码编译前就已经决定了,而引用所指向的对象可以在运行期间动态绑定。

2.类和对象

面向对象编程是一种编程方式,此编程方式的落地需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” 的使用。

  类就是一个模板,模板里可以包含多个函数,函数里实现一些功能

  对象则是根据模板创建的实例,通过实例对象可以执行类中的函数

2.1 类介绍

在python中声明函数与声明类很相似

声明类

'''
class 类名:
    '类的文档字符串'
    类体
'''
#栗子
class Data:  # 创建类的规范:类名首字符大写
    pass
大前提:
1.只有在python2中才分新式类和经典类,python3中统一都是新式类
2.新式类和经典类声明的最大不同在于,所有新式类必须继承至少一个父类
3.所有类甭管是否显式声明父类,都有一个默认继承object父类(讲继承时会讲,先记住)
在python2中的区分
经典类:
class 类名:
    pass

经典类:
class 类名(父类):
    pass

在python3中,上述两种定义方式全都是新式类
经典类与新式类

在本节开头介绍得出结论,类是数据与函数的结合,二者称为类的属性

class Garen:        #定义英雄盖伦的类,不同的玩家可以用它实例出自己英雄;
    camp='Demacia'  #所有玩家的英雄(盖伦)的阵营都是Demacia;
    def attack(self,enemy):   #普通攻击技能,enemy是敌人;
        enemy.life_value-=self.aggressivity #根据自己的攻击力,攻击敌人就减掉敌人的生命值。

2.2 类的作用

类有两个作用:属性引用、实例化

# 属性引用(类名.属性)
>>> Garen.camp #引用类的数据属性,该属性与所有对象/实例共享
'Demacia'
>>> Garen.attack #引用类的函数属性,该属性也共享
<function Garen.attack at 0x101356510>
>>> Garen.name='Garen' #增加属性
>>> del Garen.name #删除属性

名加括号就是实例化,会自动触发__init__函数的运行,可以用它来为每个实例定制自己的特征

class Garen:        #定义英雄盖伦的类,不同的玩家可以用它实例出自己英雄;
    camp='Demacia'  #所有玩家的英雄(盖伦)的阵营都是Demacia;
    def __init__(self,nickname,aggressivity=58,life_value=455): #英雄的初始攻击力58...;
        self.nickname=nickname  #为自己的盖伦起个别名;
        self.aggressivity=aggressivity #英雄都有自己的攻击力;
        self.life_value=life_value #英雄都有自己的生命值;
    def attack(self,enemy):   #普通攻击技能,enemy是敌人;
        enemy.life_value-=self.aggressivity #根据自己的攻击力,攻击敌人就减掉敌人的生命值。

实例化:类名+括号

self的作用是在实例化时自动将对象/实例本身传给__init__的第一个参数,self可以是任意名字,但是瞎几把写别人就看不懂了。

g1=Garen('草丛伦') #就是在执行Garen.__init__(g1,'草丛伦'),然后执行__init__内的代码g1.nickname=‘草丛伦’等
一:我们定义的类的属性到底存到哪里了?有两种方式查看
dir(类名):查出的是一个名字列表
类名.__dict__:查出的是一个字典,key为属性名,value为属性值

二:特殊的类属性
类名.__name__# 类的名字(字符串)
类名.__doc__# 类的文档字符串
类名.__base__# 类的第一个父类(在讲继承时会讲)
类名.__bases__# 类所有父类构成的元组(在讲继承时会讲)
类名.__dict__# 类的字典属性
类名.__module__# 类定义所在的模块
类名.__class__# 实例对应的类(仅新式类中)
类属性的补充

 

2.3 对象

对象/实例只有一种作用:属性引用

#对象/实例本身其实只有数据属性
>>> g1.nickname
'草丛伦'
>>> g1.aggressivity
>>> g1.life_value
'''
查看实例属性
同样是dir和内置__dict__两种方式
特殊实例属性
__class__
__dict__
....
'''

对象/实例本身只有数据属性,但是python的class机制会将类的函数绑定到对象上,称为对象的方法,或者叫绑定方法

>>> g1.attack #对象的绑定方法
<bound method Garen.attack of <__main__.Garen object at 0x101348dd8>>

>>> Garen.attack #对象的绑定方法attack本质就是调用类的函数attack的功能,二者是一种绑定关系
<function Garen.attack at 0x101356620>

对象的绑定方法的特别之处在于:obj.func()会把obj传给func的第一个参数(也就是self)。

2.4 类和对象/实例的命名空间

创建一个类就会创建一个类的名称空间,用来存储类中定义的所有名字,这些名字称为类的属性。

而类有两种属性:数据属性和函数属性

  1.类的数据属性是共享给所有对象的

  2.类的函数属性是绑定到所有对象的:

创建一个对象/实例就会创建一个对象/实例的名称空间,存放对象/实例的名字,称为对象/实例的属性

在obj.name会先从obj自己的名称空间里找name,找不到则去类中找,类也找不到就找父类...最后都找不到就抛出异常

3 继承与派生

3.1.1 什么是继承

继承是一种创建新的类的方式,在python中,新建的类可以继承自一个或者多个父类,原始类称为基类或超类,新建的类称为派生类或子类。

python中类的继承分为:单继承和多继承

class ParentClass1: #定义父类
    pass

class ParentClass2: #定义父类
    pass

class SubClass1(ParentClass1): #单继承,基类是ParentClass1,派生类是SubClass
    pass

class SubClass2(ParentClass1,ParentClass2): #python支持多继承,用逗号分隔开多个继承的类
    pass

查看继承

>>> SubClass1.__bases__
(<class '__main__.ParentClass1'>,)
>>> SubClass2.__bases__
(<class '__main__.ParentClass1'>, <class '__main__.ParentClass2'>)

提示:如果没有指定基类,python的类会默认继承object类,object是所有python类的基类,它提供了一些常见方法(如__str__)的实现。

>>> ParentClass1.__bases__
(<class 'object'>,)
>>> ParentClass2.__bases__
(<class 'object'>,)

3.1.2 继承与抽象(先抽象再继承)

抽象即抽取类似或者说比较像的部分。

抽象分成两个层次: 

1.将奥巴马和梅西这俩对象比较像的部分抽取成类; 

2.将人,猪,狗这三个类比较像的部分抽取成父类。

抽象最主要的作用是划分类别(可以隔离关注点,降低复杂度)

继承:是基于抽象的结果,通过编程语言去实现它,肯定是先经历抽象这个过程,才能通过继承的方式去表达出抽象的结构。

抽象只是分析和设计的过程中,一个动作或者说一种技巧,通过抽象可以得到类

继承:

在开发程序的过程中,如果我们定义了一个类A,然后又想新建立另外一个类B,但是类B的大部分内容与类A的相同时

我们不可能从头开始写一个类B,这就用到了类的继承的概念。

通过继承的方式新建类B,让B继承A,B会‘遗传’A的所有属性(数据属性和函数属性),实现代码重用

class Animal:

    def eat(self):
        print("%s 吃 " %self.name)

    def drink(self):
        print ("%s 喝 " %self.name)

    def shit(self):
        print ("%s 拉 " %self.name)

    def pee(self):
        print ("%s 撒 " %self.name)


class Cat(Animal):

    def __init__(self, name):
        self.name = name
        self.breed = ''

    def cry(self):
        print('喵喵叫')

class Dog(Animal):

    def __init__(self, name):
        self.name = name
        self.breed=''

    def cry(self):
        print('汪汪叫')
继承代码示例

当然子类也可以添加自己新的属性或者在自己这里重新定义这些属性(不会影响到父类),需要注意的是,一旦重新定义了自己的属性且与父类重名,那么调用新增的属性时,就以自己为准了。

class Riven(Hero):
    camp='Noxus'
    def attack(self,enemy): #在自己这里定义新的attack,不再使用父类的attack,且不会影响父类
        print('from riven')
    def fly(self): #在自己这里定义新的
        print('%s is flying' %self.nickname)

在子类中,新建的重名的函数属性,在编辑函数内功能的时候,有可能需要重用父类中重名的那个函数功能,应该是用调用普通函数的方式,即:类名.func(),此时就与调用普通函数无异了,因此即便是self参数也要为其传值。

3.1.3 组合与重用

软件重用的重要方式除了继承之外还有另外一种方式,即:组合

组合指的是,在一个类中以另外一个类的对象作为数据属性,称为类的组合

>>> class Equip: #武器装备类
...     def fire(self):
...         print('release Fire skill')
... 
>>> class Riven: #英雄Riven的类,一个英雄需要有装备,因而需要组合Equip类
...     camp='Noxus'
...     def __init__(self,nickname):
...         self.nickname=nickname
...         self.equip=Equip() #用Equip类产生一个装备,赋值给实例的equip属性
... 
>>> r1=Riven('锐雯雯')
>>> r1.equip.fire() #可以使用组合的类产生的对象所持有的方法
release Fire skill

3.1.4 继承和组合使用场景

  继承方式:

通过继承建立了派生类与基类之间的关系,它是一种'是'的关系,比如白马是马,人是动物。

当类之间有很多相同的功能,提取这些共同的功能做成基类,用继承比较好,比如教授是老师

>>> class Teacher:
...     def __init__(self,name,gender):
...         self.name=name
...         self.gender=gender
...     def teach(self):
...         print('teaching')
... 
>>> 
>>> class Professor(Teacher):
...     pass
... 
>>> p1=Professor('egon','male')
>>> p1.teach()
teaching

  组合方式:

用组合的方式建立了类与组合的类之间的关系,它是一种‘有’的关系,比如教授有生日,教授教python课程

class BirthDate:
    def __init__(self,year,month,day):
        self.year=year
        self.month=month
        self.day=day

class Couse:
    def __init__(self,name,price,period):
        self.name=name
        self.price=price
        self.period=period

class Teacher:
    def __init__(self,name,gender):
        self.name=name
        self.gender=gender
    def teach(self):
        print('teaching')
class Professor(Teacher):
    def __init__(self,name,gender,birth,course):
        Teacher.__init__(self,name,gender)
        self.birth=birth
        self.course=course

p1=Professor('egon','male',
             BirthDate('1995','1','27'),
             Couse('python','28000','4 months'))

print(p1.birth.year,p1.birth.month,p1.birth.day)
print(p1.course.name,p1.course.price,p1.course.period)
'''
运行结果:
1 27
python 28000 4 months
'''

3.2 接口与归一化设计

3.2.1 什么是接口

继承有两种用途:

一:继承基类的方法,并且做出自己的改变或者扩展(代码重用)

二:声明某个子类兼容于某基类,定义一个接口类Interface,接口类中定义了一些接口名(就是函数名)且并未实现接口的功能,子类继承接口类,并且实现接口中的功能

class Interface:#定义接口Interface类来模仿接口的概念,python中压根就没有interface关键字来定义一个接口。
    def read(self): #定接口函数read
        pass

    def write(self): #定义接口函数write
        pass


class Txt(Interface): #文本,具体实现read和write
    def read(self):
        print('文本数据的读取方法')

    def write(self):
        print('文本数据的读取方法')

class Sata(Interface): #磁盘,具体实现read和write
    def read(self):
        print('硬盘数据的读取方法')

    def write(self):
        print('硬盘数据的读取方法')

class Process(All_file):
    def read(self):
        print('进程数据的读取方法')

    def write(self):
        print('进程数据的读取方法')

实践中,继承的第一种含义意义并不很大,甚至常常是有害的。因为它使得子类与基类出现强耦合。

继承的第二种含义非常重要。它又叫“接口继承”。
接口继承实质上是要求“做出一个良好的抽象,这个抽象规定了一个兼容接口,使得外部调用者无需关心具体细节,可一视同仁的处理实现了特定接口的所有对象”——这在程序设计上,叫做归一化。

归一化使得高层的外部使用者可以不加区分的处理所有接口兼容的对象集合——就好象linux的泛文件概念一样,所有东西都可以当文件处理,不必关心它是内存、磁盘、网络还是屏幕(当然,对底层设计者,当然也可以区分出“字符设备”和“块设备”,然后做出针对性的设计:细致到什么程度,视需求而定)。

在python中根本就没有一个叫做interface的关键字,上面的代码只是看起来像接口,其实并没有起到接口的作用,子类完全可以不用去实现接口 ,如果非要去模仿接口的概念,可以借助第三方模块:

http://pypi.python.org/pypi/zope.interface

twisted的twisted\internet\interface.py里使用zope.interface

文档https://zopeinterface.readthedocs.io/en/latest/

3.2.2 为什么要使用接口

接口提取了一群类共同的函数,可以把接口当做一个函数的集合。

然后让子类去实现接口中的函数。

这么做的意义在于归一化,什么叫归一化,就是只要是基于同一个接口实现的类,那么所有的这些类产生的对象在使用时,从用法上来说都一样。

归一化,让使用者无需关心对象的类是什么,只需要的知道这些对象都具备某些功能就可以了,这极大地降低了使用者的使用难度。

比如:我们定义一个动物接口,接口里定义了有跑、吃、呼吸等接口函数,这样老鼠的类去实现了该接口,松鼠的类也去实现了该接口,由二者分别产生一只老鼠和一只松鼠送到你面前,即便是你分别不到底哪只是什么鼠你肯定知道他俩都会跑,都会吃,都能呼吸。

再比如:我们有一个汽车接口,里面定义了汽车所有的功能,然后由本田汽车的类,奥迪汽车的类,大众汽车的类,他们都实现了汽车接口,这样就好办了,大家只需要学会了怎么开汽车,那么无论是本田,还是奥迪,还是大众我们都会开了,开的时候根本无需关心我开的是哪一类车,操作手法(函数调用)都一样

3.3 抽象类

3.3.1 什么是抽象类: 

与java一样,python也有抽象类的概念但是同样需要借助模块实现,抽象类是一个特殊的类,它的特殊之处在于只能被继承,不能被实例化

3.3.2 为什么要有抽象类:

如果说类是从一堆对象中抽取相同的内容而来的,那么抽象类是从一堆中抽取相同的内容而来的,内容包括数据属性和函数属性。

  比如我们有香蕉的类,有苹果的类,有桃子的类,从这些类抽取相同的内容就是水果这个抽象的类,你吃水果时,要么是吃一个具体的香蕉,要么是吃一个具体的桃子。。。。。。你永远无法吃到一个叫做水果的东西。

    从设计角度去看,如果类是从现实对象抽象而来的,那么抽象类就是基于类抽象而来的。

  从实现角度来看,抽象类与普通类的不同之处在于:抽象类中只能有抽象方法(没有实现功能),该类不能被实例化,只能被继承,且子类必须实现抽象方法。这一点与接口有点类似,但其实是不同的,即将揭晓答案

3.3.3 在python中实现抽象类:

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
#一切皆文件
import abc #利用abc模块实现抽象类

class All_file(metaclass=abc.ABCMeta):
    all_type='file'
    @abc.abstractmethod #定义抽象方法,无需实现功能
    def read(self):
        '子类必须定义读功能'
        pass

    @abc.abstractmethod #定义抽象方法,无需实现功能
    def write(self):
        '子类必须定义写功能'
        pass

# class Txt(All_file):
#     pass
#
# t1=Txt() #报错,子类没有定义抽象方法

class Txt(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('文本数据的读取方法')

    def write(self):
        print('文本数据的读取方法')

class Sata(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('硬盘数据的读取方法')

    def write(self):
        print('硬盘数据的读取方法')

class Process(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('进程数据的读取方法')

    def write(self):
        print('进程数据的读取方法')

wenbenwenjian=Txt()

yingpanwenjian=Sata()

jinchengwenjian=Process()

#这样大家都是被归一化了,也就是一切皆文件的思想
wenbenwenjian.read()
yingpanwenjian.write()
jinchengwenjian.read()

print(wenbenwenjian.all_type)
print(yingpanwenjian.all_type)
print(jinchengwenjian.all_type)

 

3.3.4 抽象类和接口

抽象类的本质还是类,指的是一组类的相似性,包括数据属性(如all_type)和函数属性(如read、write),而接口只强调函数属性的相似性。

抽象类是一个介于类和接口之间的一个概念,同时具备类和接口的部分特性,可以用来实现归一化设计 

3.4 继承实现原理

3.4.1 顺序继承

class A(object):
    def test(self):
        print('from A')

class B(A):
    def test(self):
        print('from B')

class C(A):
    def test(self):
        print('from C')

class D(B):
    def test(self):
        print('from D')

class E(C):
    def test(self):
        print('from E')

class F(D,E):
    # def test(self):
    #     print('from F')
    pass
f1=F()
f1.test()
print(F.__mro__) #只有新式才有这个属性可以查看线性列表,经典类没有这个属性

#新式类继承顺序:F->D->B->E->C->A
#经典类继承顺序:F->D->B->A->E->C
#python3中统一都是新式类
#pyhon2中才分新式类与经典类
继承顺序

 

3.4.2 继承原理(python如何实现的继承) 

python到底是如何实现继承的,对于你定义的每一个类,python会计算出一个方法解析顺序(MRO)列表,这个MRO列表就是一个简单的所有基类的线性顺序列表,例如

>>> F.mro() #等同于F.__mro__
[<class '__main__.F'>, <class '__main__.D'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

为了实现继承,python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。
而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理,它实际上就是合并所有父类的MRO列表并遵循如下三条准则:
1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类

3.4.3 子类中调用父类的方法

子类继承了父类的方法,然后想进行修改,注意了是基于原有的基础上修改,那么就需要在子类中调用父类的方法

方法一:父类名.父类方法()

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'

class Vehicle: #定义交通工具类
     Country='China'
     def __init__(self,name,speed,load,power):
         self.name=name
         self.speed=speed
         self.load=load
         self.power=power

     def run(self):
         print('开动啦...')

class Subway(Vehicle): #地铁
    def __init__(self,name,speed,load,power,line):
        Vehicle.__init__(self,name,speed,load,power)
        self.line=line

    def run(self):
        print('地铁%s号线欢迎您' %self.line)
        Vehicle.run(self)

line13=Subway('中国地铁','180m/s','1000人/箱','',13)
line13.run()
View Code

方法二:super()

class Vehicle: #定义交通工具类
     Country='China'
     def __init__(self,name,speed,load,power):
         self.name=name
         self.speed=speed
         self.load=load
         self.power=power

     def run(self):
         print('开动啦...')

class Subway(Vehicle): #地铁
    def __init__(self,name,speed,load,power,line):
        #super(Subway,self) 就相当于实例本身 在python3中super()等同于super(Subway,self)
        super().__init__(name,speed,load,power)
        self.line=line

    def run(self):
        print('地铁%s号线欢迎您' %self.line)
        super(Subway,self).run()

class Mobike(Vehicle):#摩拜单车
    pass

line13=Subway('中国地铁','180m/s','1000人/箱','',13)
line13.run()
View Code

不用super引发的惨案

#每个类中都继承了且重写了父类的方法
class A:
    def __init__(self):
        print('A的构造方法')
class B(A):
    def __init__(self):
        print('B的构造方法')
        A.__init__(self)


class C(A):
    def __init__(self):
        print('C的构造方法')
        A.__init__(self)


class D(B,C):
    def __init__(self):
        print('D的构造方法')
        B.__init__(self)
        C.__init__(self)

    pass
f1=D()

print(D.__mro__) #python2中没有这个属性
View Code

当你使用super()函数时,Python会在MRO列表上继续搜索下一个类。只要每个重定义的方法统一使用super()并只调用它一次,那么控制流最终会遍历完整个MRO列表,每个方法也只会被调用一次(注意注意注意:使用super调用的所有属性,都是从MRO列表当前的位置往后找,千万不要通过看代码去找继承关系,一定要看MRO列表

#每个类中都继承了且重写了父类的方法
class A:
    def __init__(self):
        print('A的构造方法')
class B(A):
    def __init__(self):
        print('B的构造方法')
        super(B,self).__init__()


class C(A):
    def __init__(self):
        print('C的构造方法')
        super(C,self).__init__()


class D(B,C):
    def __init__(self):
        print('D的构造方法')
        super(D,self).__init__()

f1=D()

print(D.__mro__) #python2中没有这个属性
View Code

 

4 多态及多态性

4.1多态

多态指的是一类事物有多种形态,(一个抽象类有多个子类,因而多态的概念依赖于继承)

1. 序列类型有多种形态:字符串,列表,元组。

2. 动物有多种形态:人,狗,猪

import abc
class Animal(metaclass=abc.ABCMeta): #同一类事物:动物
    @abc.abstractmethod
    def talk(self):
        pass

class People(Animal): #动物的形态之一:人
    def talk(self):
        print('say hello')

class Dog(Animal): #动物的形态之二:狗
    def talk(self):
        print('say wangwang')

class Pig(Animal): #动物的形态之三:猪
    def talk(self):
        print('say aoao')

 

3. 文件有多种形态:文件文件,可执行文件

import abc
class File(metaclass=abc.ABCMeta): #同一类事物:文件
    @abc.abstractmethod
    def click(self):
        pass

class Text(File): #文件的形态之一:文本文件
    def click(self):
        print('open file')

class ExeFile(File): #文件的形态之二:可执行文件
    def click(self):
        print('execute file')

Python多态示例(仅供参考,后面还有说)

#_*_coding:utf-8_*_
 
 
class Animal(object):
    def __init__(self, name):  # Constructor of the class
        self.name = name
 
    def talk(self):              # Abstract method, defined by convention only
        raise NotImplementedError("Subclass must implement abstract method")
 
 
class Cat(Animal):
    def talk(self):
        print('%s: 喵喵喵!' %self.name)
 
 
class Dog(Animal):
    def talk(self):
        print('%s: 汪!汪!汪!' %self.name)
 
 
 
def func(obj): #一个接口,多种形态
    obj.talk()
 
c1 = Cat('小晴')
d1 = Dog('李磊')
 
func(c1)
func(d1)
python多态示例

 

4.2 多态性

多态与多态性是两种概念。

多态性是指具有不同功能的函数可以使用相同的函数名,这样就可以用一个函数名调用不同内容的函数。

在面向对象方法中一般是这样表述多态性:向不同的对象发送同一条消息,不同的对象在接收时会产生不同的行为(即方法)。也就是说,每个对象可以用自己的方式去响应共同的消息。所谓消息,就是调用函数,不同的行为就是指不同的实现,即执行不同的函数。

多态性分为静态多态性和动态多态性

静态多态性:如任何类型都可以用运算符+进行运算

动态多态性:如下

1.

2.

>>> def func(animal): #参数animal就是对态性的体现
...     animal.talk()
... 
>>> people1=People() #产生一个人的对象
>>> pig1=Pig() #产生一个猪的对象
>>> dog1=Dog() #产生一个狗的对象
>>> func(people1) 
say hello
>>> func(pig1)
say aoao
>>> func(dog1)
say wangwang

 

3.

>>> def func(f):
...     f.click()
... 
>>> t1=Text()
>>> e1=ExeFile()
>>> func(t1)
open file
>>> func(e1)
execute file

综上我们也可以说,多态性是‘一个接口(函数func),多种实现(如f.click())’

为什么要用多态性

其实大家从上面多态性的例子可以看出,我们并没有增加什么新的知识,也就是说python本身就是支持多态性的,这么做的好处是什么呢?

1.增加了程序的灵活性

  以不变应万变,不论对象千变万化,使用者都是同一种形式去调用,如func(animal)

2.增加了程序额可扩展性

通过继承animal类创建了一个新的类,使用者无需更改自己的代码,还是用func(animal)去调用

>>> class Cat(Animal): #属于动物的另外一种形态:猫
...     def talk(self):
...         print('say miao')
... 
>>> def func(animal): #对于使用者来说,自己的代码根本无需改动
...     animal.talk()
... 
>>> cat1=Cat() #实例出一只猫
>>> func(cat1) #甚至连调用方式也无需改变,就能调用猫的talk功能
say miao

'''
这样我们新增了一个形态Cat,由Cat类产生的实例cat1,使用者可以在完全不需要修改自己代码的情况下。使用和人、狗、猪一样的方式调用cat1的talk方法,即func(cat1)
'''

 

5 封装

5.1 封装基础

封装主要封装的内容有两种:数据和方法

封装的原因:

  1.封装数数据是为了保护隐私

  2.封装方法是为了隔离复杂度

封装数据也就是把实例的属性封装。封装方法是隔离复杂度,不需要知道函数内部的实现方法,只要知道函数的执行结果。

封装分为两个层面:

1. 第一个层面的封装(什么都不用做):创建类和对象会分别创建二者的名称空间,我们只能用类名.或者obj.的方式去访问里面的名字,这本身就是一种封装

注意:对于这一层面的封装(隐藏),类名.和实例名.就是访问隐藏属性的接口

2. 第二个层面的封装:类中把某些属性和方法隐藏起来(或者说定义成私有的),只在类的内部使用、外部无法访问,或者留下少量接口(函数)供外部访问。

注意:在python中用双下划线的方式实现隐藏属性(设置成私有的)

类中所有双下划线开头的名称如__x在类外部使用时都会自动变形成:_类名__x的形式:(仅在类实例化的第一次进行变现)

class A:
    __N=0 #类的数据属性就应该是共享的,但是语法上是可以把类的数据属性设置成私有的如__N,会变形为_A__N
    def __init__(self):
        self.__X=10 #变形为self._A__X
    def __foo(self): #变形为_A__foo
        print('from A')
    def bar(self):
        self.__foo() #只有在类内部才可以通过__foo的形式访问到.

a = A

print(A.__dict__)  # 查看类的所有属性

自动变现的特点总结:

1.类中定义的__x只能在内部使用,如self.__x,引用的就是变形的结果

2.这种变形其实正是针对外部的变形,在外部是无法通过__x这个名字访问到的。

3.在子类定义的__x不会覆盖在父类定义的__x,因为子类中变形成了:_子类名__x,而父类中变形成了:_父类名__x,即双下滑线开头的属性在继承给子类时,子类是无法覆盖的。

注意:对于这一层面的封装(隐藏),我们需要在类中定义一个函数(接口函数)在它内部访问被隐藏的属性,然后外部就可以使用了(也可以使用property来解决)

 这种变形需要注意的问题是:

1.这种机制也并没有真正意义上限制我们从外部直接访问属性,知道了类名和属性名就可以拼出名字:_类名__属性,然后就可以访问了,如a._A__N

>>> a=A()
>>> a._A__N
0
>>> a._A__X
10
>>> A._A__N
0

2.变形的过程只在类的定义是发生一次,在定义后的赋值操作,不会变形

3.在继承中,父类如果不想让子类覆盖自己的方法,可以将方法定义为私有的

#正常情况
>>> class A:
...     def fa(self):
...         print('from A')
...     def test(self):
...         self.fa()
... 
>>> class B(A):
...     def fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from B
正常情况
#把fa定义成私有的,即__fa
>>> class A:
...     def __fa(self): #在定义时就变形为_A__fa
...         print('from A')
...     def test(self):
...         self.__fa() #只会与自己所在的类为准,即调用_A__fa
... 
>>> class B(A):
...     def __fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from A

python并不会真的阻止你访问私有的属性,模块也遵循这种约定,如果模块名以单下划线开头,那么from module import *时不能被导入,但是你from module import _private_module依然是可以导入的

5.2 特性(property)

property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值

import math
class Circle:
    def __init__(self,radius): #圆的半径radius
        self.radius=radius

    @property
    def area(self):
        return math.pi * self.radius**2 #计算面积

    @property
    def perimeter(self):
        return 2*math.pi*self.radius #计算周长

c=Circle(10)
print(c.radius)
print(c.area) #可以向访问数据属性一样去访问area,会触发一个函数的执行,动态计算出一个值
print(c.perimeter) #同上
'''
输出结果:
10
314.1592653589793
62.83185307179586
'''

 

注意:此时的特性arear和perimeter不能被赋值

c.area=3 #为特性area赋值
'''
抛出异常:
AttributeError: can't set attribute
'''

5.2.1 为什么要用property

将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉自己的name是执行了一个函数然后计算出来的,这种特性的使用方式遵循了统一访问的原则

除此之外,看下

ps:面向对象的封装有三种方式:
【public】
这种其实就是不封装,是对外公开的
【protected】
这种封装方式对外不公开,但对朋友(friend)或者子类(形象的说法是“儿子”,但我不知道为什么大家 不说“女儿”,就像“parent”本来是“父母”的意思,但中文都是叫“父类”)公开
【private】
这种封装对谁都不公开

 

python并没有在语法上把它们三个内建到自己的class机制中,在C++里一般会将所有的所有的数据都设置为私有的,然后提供set和get方法(接口)去设置和获取,在python中通过property方法可以实现。

class Foo:
    def __init__(self,val):
        self.__NAME=val #将所有的数据属性都隐藏起来

    @property
    def name(self):
        return self.__NAME #obj.name访问的是self.__NAME(这也是真实值的存放位置)

    @name.setter
    def name(self,value):
        if not isinstance(value,str):  #在设定值之前进行类型检查
            raise TypeError('%s must be str' %value)
        self.__NAME=value #通过类型检查后,将值value存放到真实的位置self.__NAME

    @name.deleter
    def name(self):
        raise TypeError('Can not delete')

f=Foo('egon')
print(f.name)
# f.name=10 #抛出异常'TypeError: 10 must be str'
del f.name #抛出异常'TypeError: Can not delete'

 

5.3 封装与扩展性

写疯了.....后期更新吧

 

posted @ 2017-03-06 23:17  40块钱抓娃娃  阅读(354)  评论(0编辑  收藏  举报