信息安全系统设计基础第十二周总结

exec1

#include <stdio.h>
#include <unistd.h>
int main()
{
char *arglist[3];
	arglist[0] = "ls";
arglist[1] = "-l";
arglist[2] = 0 ;//NULL
printf("* * * About to exec ls -l\n");
execvp( "ls" , arglist );
printf("* * * ls is done. bye");
	return 0;
}

exec系统调用会从当前进程中把当前程序的机器指令清除,然后在空的进程中载入调用时指定的程序代码,最后运行这个新的程序。

execvp函数:从PATH 环境变量所指的目录中查找符合参数file 的文件名,找到后便执行该文件,然后将第二个参数argv传给该欲执行的文件,如果执行成功则函数不会返回,执行失败则直接返回-1,失败原因存于errno中。

所需头文件 #include <unistd.h>
函数原形 execvp(const char *file,char *const argv[])
函数返回值 1:出错

 

exec2

#include <stdio.h>
#include <unistd.h>
int main()
{
char *arglist[3];
	arglist[0] = "ls";
arglist[1] = "-l";
arglist[2] = 0 ;
printf("* * * About to exec ls -l\n");
execvp( arglist[0] , arglist );
printf("* * * ls is done. bye\n");
}

区别:exevp函数的第一个参数,exec1传的是ls,exec2直接用的arglist[0],但是二者等价,运行结果相同。

exec3

#include <stdio.h>
#include <unistd.h>
int main()
{
char *arglist[3];
char *myenv[3];
myenv[0] = "PATH=:/bin:";
myenv[1] = NULL;
	arglist[0] = "ls";
arglist[1] = "-l";
arglist[2] = 0 ;
printf("* * * About to exec ls -l\n");
// execv( "/bin/ls" , arglist );
// execvp( "ls" , arglist );
// execvpe("ls" , arglist, myenv);
	execlp("ls", "ls", "-l", NULL);
printf("* * * ls is done. bye\n");
}

execlp函数的作用:调用execlp函数进行命令的执行,execlp函数是可变参数函数,第一个参数需要设置系统环境变量中所能获取的命令文件,或者自己设置绝对路径的命令文件,最后一个参数必须设置为空,以便标记这个函数的参数已经设置完成,中间的所有参数设置为第一个命令的参数,完成输出重定向。

返回值:如果执行成功则函数不会返回,执行失败则直接返回-1,失败原因存于errno 中。 

综上,exec函数名及对应含义

forkdemo1

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{
int ret_from_fork, mypid;
mypid = getpid();
printf("Before: my pid is %d\n", mypid);
ret_from_fork = fork();
sleep(1);
printf("After: my pid is %d, fork() said %d\n",
getpid(), ret_from_fork);
	return 0;
}

效果:先打印进程pid,然后调用fork函数生成子进程,休眠一秒后再次打印进程id,这时父进程打印子进程pid,子进程返回0

forkdemo2

#include <stdio.h>
#include <unistd.h>
int main()
{
printf("before:my pid is %d\n", getpid() );
fork();
fork();
printf("aftre:my pid is %d\n", getpid() );
	return 0;
}

效果:调用两次fork,共产生四个子进程,打印出四个aftre并输出

forkdemo3

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main()
{
int fork_rv;
	printf("Before: my pid is %d\n", getpid());
	fork_rv = fork();	
	if ( fork_rv == -1 )
perror("fork");
else if ( fork_rv == 0 ){
printf("I am the child. my pid=%d\n", getpid());

exit(0);
}
else{
printf("I am the parent. my child is %d\n", fork_rv);
exit(0);
}
	return 0;
}

效果:fork产生子进程,父进程返回子进程pid,不为0,所以输出父进程的那句话,子进程返回0,所以会输出子进程

forkdemo4

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main()
{
int fork_rv;
	printf("Before: my pid is %d\n", getpid());
	fork_rv = fork();		/* create new process	*/
	if ( fork_rv == -1 )		/* check for error	*/
perror("fork");
	else if ( fork_rv == 0 ){ 
printf("I am the child. my pid=%d\n", getpid());
printf("parent pid= %d, my pid=%d\n", getppid(), getpid());
exit(0);
}
	else{
printf("I am the parent. my child is %d\n", fork_rv);
sleep(10);
exit(0);
}
	return 0;
}

效果:先打印进程pid,然后fork创建子进程,父进程返回子进程pid,所以输出parent一句,休眠十秒;子进程返回0,所以输出child和后一句。

forkgdb

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int  gi=0;
int main()
{
int li=0;
static int si=0;
int i=0;
	pid_t pid = fork();
if(pid == -1){
exit(-1);
}
else if(pid == 0){
for(i=0; i<5; i++){
printf("child li:%d\n", li++);
sleep(1);
printf("child gi:%d\n", gi++);
printf("child si:%d\n", si++);
}
exit(0);

}
else{
for(i=0; i<5; i++){
printf("parent li:%d\n", li++);
printf("parent gi:%d\n", gi++);
sleep(1);
printf("parent si:%d\n", si++);
}
exit(0);

}
return 0;
}

效果:父进程打印是先打印两句,然后休眠一秒,然后打印一句,子进程先打印一句,然后休眠一秒,然后打印两句。并且这两个线程是并发的,所以可以看到在一个线程休眠的那一秒,另一个线程在执行,并且线程之间相互独立互不干扰。

综上, fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事。一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的间。然后把原来的进程的所有值都复制到新的新进程中,只有少数值与原来的进程的值不同。相当于克隆了一个自己。

fork函数特性:被调用一次,却返回两次,它可能有三种不同的返回值:
    1)在父进程中,fork返回新创建子进程的进程ID;
    2)在子进程中,fork返回0;
    3)如果出现错误,fork返回一个负值;

fork函数执行完毕后,如果创建新进程成功,则出现两个进程,一个是子进程,一个是父进程。在子进程中,fork函数返回0,在父进程中,fork返回新创建子进程的进程ID。我们可以通过fork返回的值来判断当前进程是子进程还是父进程。

 

 

psh1

 

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define	MAXARGS		20				
#define ARGLEN 100
int execute( char *arglist[] )
{
execvp(arglist[0], arglist);
perror("execvp failed");
exit(1);
}
char * makestring( char *buf )
{
char *cp;
	buf[strlen(buf)-1] = '\0';		
cp = malloc( strlen(buf)+1 );
if ( cp == NULL ){
fprintf(stderr,"no memory\n");
exit(1);
}
strcpy(cp, buf);
return cp;
}
int main()
{
char *arglist[MAXARGS+1];
int numargs;
char argbuf[ARGLEN];
	numargs = 0;
while ( numargs < MAXARGS )
{
printf("Arg[%d]? ", numargs);
if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
arglist[numargs++] = makestring(argbuf);
else
{
if ( numargs > 0 ){
arglist[numargs]=NULL;
execute( arglist );
numargs = 0;
}
}
}
return 0;
}

作用:代码相当于你输入要执行的指令,回车表示输入结束,然后输入的每个参数对应到函数中,再调用对应的指令。

psh2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <signal.h>
#define	MAXARGS		20				
#define ARGLEN 100
char *makestring( char *buf )
{
char *cp;
	buf[strlen(buf)-1] = '\0';		
cp = malloc( strlen(buf)+1 );
if ( cp == NULL ){
fprintf(stderr,"no memory\n");
exit(1);
}
strcpy(cp, buf);
return cp;
}
void execute( char *arglist[] )
{
int pid,exitstatus;
	pid = fork();					
switch( pid ){
case -1:
perror("fork failed");
exit(1);
case 0:
execvp(arglist[0], arglist);
perror("execvp failed");
exit(1);
default:
while( wait(&exitstatus) != pid )
;
printf("child exited with status %d,%d\n",
exitstatus>>8, exitstatus&0377);
}
}
int main()
{
char *arglist[MAXARGS+1];
int numargs;
char argbuf[ARGLEN];
	numargs = 0;
while ( numargs < MAXARGS )
{
printf("Arg[%d]? ", numargs);
if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
arglist[numargs++] = makestring(argbuf);
else
{
if ( numargs > 0 ){
arglist[numargs]=NULL;
execute( arglist );
numargs = 0;
}
}
}
return 0;
}

作用:与psh1对比,多了循环判断,不退出的话就会一直要你输入指令。

testbuf1

#include <stdio.h>
#include <stdlib.h>
int main()
{
printf("hello");
fflush(stdout);
while(1);
}

效果:先输出hello,然后换行。之后不退出。

testbuf2

#include <stdio.h>
int main()
{
printf("hello\n");
while(1);
}

效果:先输出hello,然后换行。之后不退出。

(fflush(stdout)和换行符\n效果相同)

testbuf3

#include <stdio.h>
int main()
{
fprintf(stdout, "1234", 5);
fprintf(stderr, "abcd", 4);
}

效果:将内容格式化输出到标准错误、输出流中。

testpid

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main()
{
printf("my pid: %d \n", getpid());
printf("my parent's pid: %d \n", getppid());
return 0;
}

作用:输出当前进程pid和当前进程的父进程的pid。 

testsystem

#include <stdlib.h>
int main ( int argc, char *argv[] )
{
	system(argv[1]);
system(argv[2]);
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */

system(执行shell 命令):
         相关函数:fork,execve,waitpid,popen
         表头文件:#i nclude<stdlib.h>
         定义函数:int system(const char * string);
         函数说明:system()会调用fork()产生子进程,由子进程来调用/bin/sh-c string来执行参数string字符串所代表的命令,此命>令执行完后随即返回原调用的进程。在调用system()期间SIGCHLD 信号会被暂时搁置,SIGINT和SIGQUIT 信号则会被忽略。
返回值:=-1:出现错误 
          =0:调用成功但是没有出现子进程 
          >0:成功退出的子进程的id
总的来说,system函数执行shell命令,也就是向dos发送一条指令。这里是后面可以跟两个参数,然后向dos发送这两个命令,分别执行。

waitdemo1

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define	DELAY	4
void child_code(int delay)
{
printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
sleep(delay);
printf("child done. about to exit\n");
exit(17);
}
void parent_code(int childpid)
{
int wait_rv=0; /* return value from wait() */
wait_rv = wait(NULL);
printf("done waiting for %d. Wait returned: %d\n",
childpid, wait_rv);
}
int main()
{
int newpid;
printf("before: mypid is %d\n", getpid());
if ( (newpid = fork()) == -1 )
perror("fork");
else if ( newpid == 0 )
child_code(DELAY);
else
parent_code(newpid);
	return 0;
}

效果:如果有子进程,则终止子进程,成功返回子进程pid。

waitdemo2

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define	DELAY	10
void child_code(int delay)
{
printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
sleep(delay);
printf("child done. about to exit\n");
exit(27);
}
void parent_code(int childpid)
{
int wait_rv;
int child_status;
int high_8, low_7, bit_7;
	wait_rv = wait(&child_status);
printf("done waiting for %d. Wait returned: %d\n", childpid, wait_rv);
	high_8 = child_status >> 8;     /* 1111 1111 0000 0000 */
low_7 = child_status & 0x7F; /* 0000 0000 0111 1111 */
bit_7 = child_status & 0x80; /* 0000 0000 1000 0000 */
printf("status: exit=%d, sig=%d, core=%d\n", high_8, low_7, bit_7);
}
int main()
{
int newpid;
	printf("before: mypid is %d\n", getpid());
	if ( (newpid = fork()) == -1 )
perror("fork");
else if ( newpid == 0 )
child_code(DELAY);
else
parent_code(newpid);
}

效果:比1来多了一个子进程的状态区分,把状态拆分成三块,exit,sig和core。

综上,wait的函数原型是

#include <sys/types.h> /* 提供类型pid_t的定义*/ 

#include <sys/wait.h> 

pid_t wait(int *status); 

进程一旦调用了wait,就立即阻塞自己,由wait自动分析是否当前进程的某个子进程已经退出,如果让它找到了这样一个已经变成僵尸的子进程,wait就会收集这个子进程的信息,并把它彻底销毁后返回;如果没有找到这样一个子进程,wait就会一直阻塞在这里,直到有一个出现为止。

参考地址:http://www.cnblogs.com/20135202yjx/p/5003653.html

posted @ 2015-11-29 20:23  20135305  阅读(167)  评论(0编辑  收藏  举报