信息安全系统设计基础第九周学习总结

第十章:系统级I/O


输入输出I/O是在主存和外部设备(如磁盘,网络和终端)之间拷贝数据的过程。
输入就是从I/O设备拷贝数据到贮存,而输出就是从主存拷贝数据到I/O设备。
所有语言的运行时系统都提供执行I/O的较高级别的工具。例如,ANSI C提供标准I/O库,包含像printf和scanf这样执行带缓冲区的I/O函数。C++语言用它的重载操作符<<(输出)和>>(输入)提供了类似的功能。在UNIX系统中,是通过使用由内核提供的系统级Unix I/O函数来实现这些比较高级的I/O函数的。

UNIX I/O

在UNIX系统中有一个说法,一切皆文件。所有的I/O设备,如网络、磁盘都被模型化为文件,而所有的输入和输出都被当做对相应文件的读和写来执行。这种将设备映射为文件的方式,允许UNIX内核引出一个简单、低级的应用接口,称为UNIX I/O,这使得所有的输入和输出都能以一种统一且一致的方式来执行。

•打开文件 打开文件操作完成以后才能对文件进行一些列的操作,打开完成过以后会返回一个文件描述符,它在后续对此文件的所有操作中标识这个文件,内核记录有关这个打开文件的所有信息。

•改变当前的文件位置。
•读写文件
•关闭文件 应用完成了对文件的访问之后,就通知内核关闭这个文件,内核释放文件打开时创建的数据结构,并将这个描述符恢复到可用的描述符池中。进程终止,内核也会关闭所有打开的文件并释放他们的存储器资源。

打开和关闭文件

进程是通过调用open函数来打开一个已存在的文件或者创建一个新文件。

flags参数表示进程打算如何访问这个文件,它的值包括
• O_RDONLY
• O_WRONLY
• O_RDWR
flags参数也可以是一个或者更多位掩码的或,提供一些额外的指示:
• O_CREAT
• O_TRUNC:如果文件已经存在,就截断它。
• O_APPEND

读和写文件

应用程序是通过分别调用系统函数 read和write函数来执行输入和输出的。

size_t是作为usigned int,而ssize_t是作为int。
在某些情况下,read和write传送的字节比应用程序要求的要少。出现这种情况的可能的原因有:
• 读时遇到EOF?? 假设该文件从当前文件位置开始只含有20个字节,而应用程序要求我们以50个字节的片进行读取,这样一来,这个read的返回的值是20,在此之后的read则返回0.
• 从终端读文本行? 如果打开的文件是与终端相关联的,那么每个read函数将一次传送一个文本行,返回的不足值等于文本行的大小。(具体的含义可看我以前的文章,关于缓冲区的)
• 读和写socket??? 如果打开的文件对应于网络套接字,那么内部缓冲约束和较长的网络延迟会导致read和write返回不足值。

RIO的无缓冲的输入输出函数

rio_readn函数从描述符fd的当前文件位置最多传送n个字节到存储器位置usrbuf。类似的,rio_writen函数从位置usrbuf传送n个字节到描述符fd。rio_readn函数在遇到EOF时只能返回一个不足值。rio_writen函数绝不会返回不足值。具体代码如下:

注意:如果rio_readn和rio_writen函数被一个从应用信号处理程序的返回中断,那么每个函数都会手动地重启read或write。

RIO的带缓冲的输入输出函数

一个文本行就是一个由 换行符 结尾的ASCII码字符序列。在Unix系统中,换行符是‘\n’,与ASCII码换行符LF相同,数值为0x0a。假设我们要编写一个程序来计算文本文件中文本行的数量应该如何来实现呢??嘿嘿这个问题,可是我在微软面试的时候,面试官给我出的一道考题。
一种方法是用read函数来一次一个字节地从文件传送到用户存储器,检查每个字节来查找换行符。这种方法的问题就是效率不高,每次取文件中的一个字节都要求陷入内核。
一种更好的方法是调用一个包装函数(rio_readlineb),它从一个内部缓冲区拷贝一个文本行,当缓冲区变空时,会自动的调用read系统调用来重新填满缓冲区。
在带缓冲区的版本中,每打开一个描述符都会调用一次rio_readinitb函数,它将描述符fd和地址rp处的一个类型为rio_t的读缓冲区联系起来。
rio_readinitb函数从文件rp读取一个文本行(包括结尾的换行符),将它拷贝到存储器位置usrbuf,并且用空字符来结束这个文本行。

RIO读程序的核心是rio_read函数,rio_read函数可以看成是Unix read函数的带缓冲区的版本。当调用rio_read要求读取n个字节的时候,读缓冲区内有rp->rio_cnt个未读的字节。如果缓冲区为空的时候,就会调用read系统函数去填满缓冲区。这个read调用收到一个不足值的话并不是一个错误,只不过读缓冲区的是填充了一部分。
一旦缓冲区非空,rio_read就从读缓冲区拷贝n和rp->rio_cnt中较小值个字节到用户缓冲区,并返回拷贝字节的数目。

对于应用程序来说,rio_read和系统调用read有着相同的语义。出错时返回-1;在EOF时,返回0;如果要求的字节超过了读缓冲区内未读的字节的数目,它会返回一个不足值。rio_readlineb函数多次调用rio_read函数。每次调用都从读缓冲区返回一个字节,然后检查这个字节是否是结尾的换行符。rio_readlineb函数如下所示:

rio_readlineb函数最多读取(maxlen-1)个字节,余下的一个字节留给结尾的空字符。超过maxlen-1字节的文本行被截断,并用一个空字符结束。

读取文件元数据

应用程序能够通过调用stat和fstat函数检索到关于文件的信息(有时也称为文件的元数据)

include <sys/stat.h>

include <unistd.h>

int stat(const char *filename,struct stat *buf);

int fstat(int fd,struct stat *buf);

若成功,返回0,若出错则为-1.stat以一个文件名为输入,并且填充buf结构体。fstat函数只不过是以文件描述符而不是文件名作为输入。

struct stat {

if defined(ARMEB)

unsigned short st_dev;
unsigned short __pad1;

else

unsigned long  st_dev;

endif

unsigned long  st_ino;
unsigned short st_mode;
unsigned short st_nlink;
unsigned short st_uid;
unsigned short st_gid;

if defined(ARMEB)

unsigned short st_rdev;
unsigned short __pad2;

else

unsigned long  st_rdev;

endif

unsigned long  st_size;
unsigned long  st_blksize;
unsigned long  st_blocks;
unsigned long  st_atime;
unsigned long  st_atime_nsec;
unsigned long  st_mtime;
unsigned long  st_mtime_nsec;
unsigned long  st_ctime;
unsigned long  st_ctime_nsec;
unsigned long  __unused4;
unsigned long  __unused5;

};

其中st_size成员包含了文件的字节大小。st_mode为文件访问许可位。UNIX提供的宏指令根据st_mode成员来确定文件的类型:S_ISREG(),这是一个普通文件么;S_ISDIR(),这是一个目录文件么;S_ISSOCK()这是一个网络套接字么。使用一下这个函数

include <stdio.h>

include <stdlib.h>

include <string.h>

include <sys/stat.h>

include <sys/types.h>

include <unistd.h>

int main()
{
int fd,size;
struct stat buf_stat;
memset(&buf_stat,0x00,sizeof(buf_stat));
fd=stat("stat.c",&buf_stat);
printf("%d\n",(int)buf_stat.st_size);
return 0;
}

共享文件

内核用三个相关的数据结构来表示打开的文件:
•描述符表(descriptor table)每个进程都有它独立的描述符表,它的表项是由进程打开的文件描述符来索引的。每个打开的描述符表项指向文件表中的一个表项。
•文件表(file table) 打开文件的描述符表项指向问价表中的一个表项。所有的进程共享这张表。每个文件表的表项组成包括由当前的文件位置、引用计数(既当前指向该表项的描述符表项数),以及一个指向v-node表中对应表项的指针。关闭一个描述符会减少相应的文件表表项中的应用计数。内核不会删除这个文件表表项,直到它的引用计数为零。

•v-node表(v-node table)同文件表一样,所有的进程共享这张v-node表,每个表项包含stat结构中的大多数信息,包括st_mode和st_size成员。

下面看几张图。

描述符1和4通过不同的打开文件表表项来引用两个不同的文件。这是典型的情况,没有共享文件,并且每个描述符对应一个不同的文件。

多个描述符也可以通过不同的文件表表项来应用同一个文件。如果同一个文件被open两次,就会发生上面的情况。关键思想是每个描述符都有它自己的文件位置,所以对不同描述符的读操作可以从文件的不同位置获取数据。

父子进程也是可以共享文件的,在调用fork()之前,父进程如第一张图,然后调用fork()之后,子进程有一个父进程描述符表的副本。父子进程共享相同的打开文件表集合,因此共享相同的文件位置。一个很重要的结果就是,在内核删除相应文件表表项之前,父子进程必须都关闭了他们的描述符。

下图展示了文件描述符、打开的文件句柄以及i-node之间的关系,图中,两个进程拥有诸多打开的文件描述符。

在进程A中,文件描述符1和30都指向了同一个打开的文件句柄(标号23)。这可能是通过调用dup()、dup2()、fcntl()或者对同一个文件多次调用了open()函数而形成的。

进程A的文件描述符2和进程B的文件描述符2都指向了同一个打开的文件句柄(标号73)。这种情形可能是在调用fork()后出现的(即,进程A、B是父子进程关系),或者当某进程通过UNIX域套接字将一个打开的文件描述符传递给另一个进程时,也会发生。再者是不同的进程独自去调用open函数打开了同一个文件,此时进程内部的描述符正好分配到与其他进程打开该文件的描述符一样。

此外,进程A的描述符0和进程B的描述符3分别指向不同的打开文件句柄,但这些句柄均指向i-node表的相同条目(1976),换言之,指向同一个文件。发生这种情况是因为每个进程各自对同一个文件发起了open()调用。同一个进程两次打开同一个文件,也会发生类似情况。

I/O重定向

  函数为:

函数解释:

(即:让描述符oldfd实现newfd的功能)

eg,dup2(field,1) 将标准描述符输出重定向到field描述符

假设在调用dup2(4,1)之前,我们的状态图10-11所示,其中描述符1(标准输出)对应于文件A(比如一个终端),描述符4对应于文件B(比如一个磁盘文件)。A和B的引用计数都等于1。图10-14显示了调用dup2(4,1)之后的情况。两个描述符现在都指向了文件B;文件A已经被关闭了,并且它的文件表和v-node表表项也已经被删除了;文件B的引用计数已经增加了。从此之后,任何写到标准输出的数据都被重定向到文件B。

解析图如下:

I/O使用的抉择方法

上图中展现了几种I/O的关系模式,在应用程序中应该使用哪些函数呢?标准I/O函数是磁盘和终端设备I/O的首选。但是对网络套接字上尽量使用健壮的RIO或者系统I/O

参考资料:深入理解计算机操作系统和http://www.cnblogs.com/wuchanming/p/4459286.html

posted on 2015-11-08 20:02  20135237朱国庆  阅读(155)  评论(0编辑  收藏  举报