导航

中国剩余定理

Posted on 2016-01-26 10:42  POOH1DROSE  阅读(399)  评论(0编辑  收藏  举报

2016.1.26

 

由于比较懒,于是先copy百度一发

-------------------我是分割线--------------------

用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组:

(S):     x≡a1  (mod m1)

           x≡a2  (mod m2)

                   .

                   .

                   .

           x≡an  (mod mn)

 有解的判定条件,并用构造法给出了在有解情况下解的具体形式。

中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组(S)有解,并且通解可以用如下方式构造得到:

设M=m1 * m2 * … * mn 是整数m1,m2, ... ,mn的乘积,

并设Mi = M/mi

是除了mi以外的n- 1个整数的乘积。

设ti = Mi-1为Mi模mi的数论倒数ti Mi≡ 1(mod mi)

方程组(S)的通解形式为

X = a1t1M1 + a2t2M2 + … + antnMn + kM     (k∈Z)

在模M的意义下,方程组(S)只有一个解:X = a1t1M1 + a2t2M2 + … + antnMn

-------------------我是分割线--------------------
 
设来设去一大堆容易把人搞晕了,但是如果先看最后的式子就好理解了。
X = a1t1M1 + a2t2M2 + … + antnMn + kM     (k∈Z)
显然除了aitiMi这一项外,其余项模mi都得0,又因为tiMi的逆元,所以tiMi1(mod mi),所以x ≡ aitiMi ≡ ai (mod mi)
于是解就都符合我们求的一元同余线性方程组啦~